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INTRODUCTION: FROM QUARKS TO QCD

• Spectroscopy and the quark model

– The discovery of quarks: qqq and q̄q with q = u, d, s

generate observed spectrum of baryons and mesons

– Decay of s̄s states to K, K̄ states (OZI rule)

indicates continuity of quark lines

– Non-relativistic wave functions → ratios of

magnetic moments µn/µp etc.



• Dynamical evidence: form factors & structure functions

– Form factors: ep → ep elastic

dσ

dΩe
=

[

α2
EM cos2(θ/2)

4E2 sin4(θ/2)

]

E′

E

(

|GE(Q)|2 + τ |GM(Q)|2
1 + τ

+ 2τ |GM(Q)|2 tan2 θ/2

)

– schematically:

dσep→ep(Q)

dQ2
∼ dσee→ee(Q)

dQ2
× G(Q) with G(Q) ∼ 1

(

1 + Q2

µ2
0

)2



– Structure functions: ep inclusive

dσ

dE′ dΩ
=

[

α2
EM

2SE sin4(θ/2)

]

(

2 sin2(θ/2)F1(x, Q2)+
m cos2(θ/2)

E − E′
F2(x, Q2)

)

with x =
Q2

2pN · q



– Scaling: F2(x,Q2) ∼ F2(x) ⇒ Point-like, quasi-free scattering

– F2 ∼ 2xF1: Spin-1/2

– Parton model structure functions

F2,N(x) =
∑

q

e2
q xfa/N(x)

– Notation: fu/N = uN etc.



• At the same time, a quark model paradox ⇒ color

– First of all, nobody had seen a quark (confinement), but also

– A problem with the quark model: quarks have spin-1/2

but nucleon quark model wave function was symmetric

• But spin-1/2 particles are all fermions – right?

• Fast-forward resolution:

– Han, Nambu 1965: quarks come in 3 triplets of different colors

– Quarks in baryons are antisymmetric in quantum number

of the group SU(3)



• The birth of QCD: SU(3)

– A nonabelian gauge theory built on color (q = q1q2q3):

LQCD =
∑

q

q̄ (i/∂ − gs/A + mq ) q − 1

4
F 2

µν[A]

– Think of: LEM = Ke + JEM · A + (E2 − B2)

– The Yang-Mills gauge theory of quarks (q) and gluons (A)

Gluons: like “charged photons”. The field is a source for itself.

– Just the right currents to couple to EM and Weak AND . . .



• Just the right kind of forces: QCD charge is “antishielded”

and grows with distance

b0 = 11 − 2nquarks/3 we get:

αs(µ
′) =

g2
s

4π
=

αs(µ)

1 + b0
αs(µ)
4π ln

(

µ′

µ

)2 =
4π

b0 ln(Q2/Λ2
QCD)

Quantum field theory: every state with the same quantum numbers

as uud in the proton . . . is present at least some of the time

So antiquarks are in the nucleon: uuddd̄, etc.

What it means: qq̄ annihilation processes in NN collisions

as d, u from one nucleon collides with d̄, ū from another



Annihilation into what? Back to quarks, and gluons, yes, but also

A B

l-

l+

X

l+ l-

γ, W, Z, H . . .

Which brings us to . . .



SELF-CONSISTENCY:

ANTIQUARKS IN HADRON HADRON SCATTERING

• The Inclusive Drell-Yan Cross Section

Parton Model: “Impulse approximation”. The template (1970):

dσNN→µµ̄+X(Q, p1, p2)

dQ2d . . .
∼
∫

dξ1dξ2

∑

a=qq̄

dσEW, Born
aā→µµ̄ (Q, ξ1p1, ξ2p2)

dQ2d . . .

×(probability to find parton a(ξ1) in N)

×(probability to find parton ā(ξ2) in N)

The probabilities are fq/N(x)’s from DIS!



Recall how it works (with colored quarks) . . .

• The Born cross section

σEW,Born is all from this diagram (ξ’s set to unity):

q(p1)

q(p2)

l-(k1)

l+(k2)

With this matrix element

M = eq
e2

ŝ u(k1)γµv(k2)v(p2)γ
µu(p1)

• First square and sum/average M . Then evaluate phase space.



• Total cross section:

σEW, Born
qq̄→µµ̄ (x1p1, x2p2) =

1

2ŝ

∫

dΩ

32π2

e2
qe

4

3
(1 + cos2 θ)

=
4πα2

9M2

∑

q

e2
q ≡ σ0(M)

With M the pair mass and 3 for color average

Now we’re ready for the parton model differential

cross section for NN scattering:

Pair mass (M) and rapidity

η ≡ (1/2) ln(Q+/Q−) = (1/2) ln[(Q0 + Q3)/(Q0 − Q3)]

overdetermined → delta functions in the Born cross section



dσ
(PM)
NN→µµ̄+X(Q, p1, p2)

dM2dη
=

∫

ξ1,ξ2

∑

a=qq̄

σEW, Born
aā→µµ̄ (ξ1p1, ξ2p2)

×δ
(

M2 − ξ1ξ2S
)

δ

(

η − 1

2
ln

(

ξ1

ξ2

))

×fa/N(ξ1) fā/N(ξ2)

and integrating over rapidity,

dσ

dM2
=

(

4πα2
EM

9M4

)
∫ 1

0

dξ1 dξ2 δ (ξ1ξ2 − τ)
∑

a

λ2
a fa/N(ξ1) fā/N(ξs)

Drell and Yan, 1970 (aside from 1/3 for color)

Analog of DIS: scaling in τ = Q2/S



• The parton model picture

PA

ξ PAA

ξ PBB

PB

q

• All QCD radiation in the f ’s . . . but why?

• Asymptotic freedom has something to do with this . . .

but how? What to do in QFT?



HOW WE GET AWAY WITH PQCD

• Specific problems for perturbation theory in QCD

1. Confinement

∫

e−iq·x〈0|T [φa(x) . . . ] |0〉

has no q2 = m2 pole for φa that

transforms nontrivially under color (confinement)

2. The pole at p2 = m2
π
∫

e−iq·x〈0|T [π(x) . . . ] |0〉

is not accessible to perturbation theory (χSB etc., etc.)



• And yet we use infrared safety & asymptotic freedom:

Q2 σ̂SD(Q2, µ2, αs(µ)) =
∑

n

cn(Q2/µ2) αs
n(µ) + O (1/Qp)

=
∑

n

cn(1) αs
n(Q) + O (1/Qp)

• What can we really calculate? PT for color singlet operators

–
∫

e−iq·x〈0|T [J(x)J(0) . . . ] |0〉 for color singlet currents

e+e− total . . . no QCD in initial state



– Another class of color singlet matrix elements:

lim
R→∞

∫

dx0

∫

dn̂ f(n̂) e−iq·y〈0|J(0)T [n̂iΘ0i(x0, Rn̂)J(y)] |0〉

With Θ0i the energy momentum tensor

“Weight” f(n̂) introduces no new dimensional scale

Short-distance dominated if all dkf/dn̂k bounded

Individual final states have IR divergences, but these

cancel in sum over collinear splitting/merging and

soft parton emission because they respect energy flow

• The essence of jet computability



• For e+e−:

Y

XZ
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Cent re of screen i s ( 0.0000, 0.0000, 0.0000)

50 GeV20105
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• And for DIS:

 Q**2 = 21475   y = 0.55   M = 198 



• And in nucleon-nucleon collisions
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But what of the initial state? (viz. parton model)

• Factorization

Q2σphys(Q,m) = ωSD(Q/µ,αs(µ)) ⊗ fLD(µ,m) + O (1/Qp)

– µ = factorization scale; m= IR scale (m may be perturbative)

– New physics in ωSD; fLD = f and/or D “universal”

– ep DIS inclusive, pp → jets, QQ̄, π(pT ) . . .

– Exclusive limits: e+e− → JJ as mJ → 0



• Whenever there is factorization, there is evolution

0 = µ
d

dµ
lnσphys(Q,m)

µ
d ln(f or D)

dµ
= −P (αs(µ)) = −µ

d ln ω

dµ

PDF f or Fragmentation D

• Wherever there is evolution there is resummation

lnσphys(Q,m) = exp

{

∫ Q

q

dµ′

µ′
P (αs(µ

′))

}



• Factorization proofs:

– (1) ωSD incoherent with long-distance dynamics

– (2) Mutual incoherence when vrel = c:

Jet-jet factorization Ward identities.

– (3) Wide-angle soft radiation sees only total color flow:

jet-soft factorization Ward identities: Wilson lines.

– (4) Dimensionless coupling and renormalizability

⇔ no worse that logarithmic divergence in the IR:

fractional power suppression ⇒ finiteness



– Classical: Lorentz contracted fields of incident particles

don’t overlap until the moment of the scattering,

creation of heavy particle, etc.!

– Initial-state interactions decouple from the hard process

– Summarized by multiplicative factors:

parton distributions

– Evolution of partons to jets/hadrons too late

to know details of the hard scattering

– Summarized by multiplicative factors:

fragmentation functions

– “Left-over” cross section for hard scattering is IR safe



INCLUSIVE EW ANNIHILATION IN PQCD

dσNN→µ+µ−+X(Q, p1, p2)

dQ2
=

∫

ξ1,ξ2

∑

a=qq̄

dσ̂aā→µ+µ−(Q)+X(Q,µ, ξ1p1, ξ2p2)

dQ2

×fa/N(ξ1, µ) fā/N(ξ2, µ)

– µ is the factorization scale: separates IR from UV

in quantum corrections. µ appears in σ̂, as αs(µ) and as ln(µ/Q)

so choosing µ ∼ Q can improve perturbative predictions

– Evolution: µdf(x, µ)/dµ =
∫ 1

x
P (x/ξ) f(ξ, µ)

makes energy extrapolations possible.



Two portraits of modern parton distributions

∗ CTEQ6 as seen at moderate momentum transfer:

∗ Two modern fits compared (note weighting with x)



• The factorized picture

PA

ξ PAA

ξ PBB

PB

1

N

sum N = 0 (PM) to infinity

q

• High-pT radiation “has a place to go.”

The rest (pT < µ) to the PDFs.



USING PQCD CORRECTIONS

The transverse momentum distribution at order αs

Extend factorization to gluon radiation process:

q(p1) + q̄(p2) → γ∗(Q) + g(k) ,

Treat this 2 → 2 process at lowest order (αs) “LO”

in factorized cross section, so that k = −Q

The result is well-defined for QT 6= 0



• The diagrams at order αs

Gluon emission contributes at QT 6= 0

Virtual corrections contribute only at QT = 0



d2σ
(1)
qq̄→γ∗g(z,Q2,QT )

dQ2 d2QT
= σ0

αsCF

π2

(

1 − 4Q2
T

(1 − z)2ŝ

)−1/2

×
[

1

Q2
T

1 + z2

(1 − z)
− 2z

(1 − z)Q2

]

Fine as long as QT 6= 0, z = Q2/S 6= 1.

QT integral → ln(1 − z)/(1 − z), z integral → ln(QT )/QT .

Both off these limits can be dealt with by reorganization,

“resummation” of higher order corrections



• Fundamental application: the total cross section

Integrate over QT at fixed z = Q2/S. QT → 0 is singular

Add diagrams with virtual gluons: their QT integrals are singular

Remove (factor) low kT = −QT < µ gluons

The remainder is now finite at fixed QT , z 6= 1. Combine with LO σ̂.

But the left-over NLO σ̂ is not a normal function of z!

Because dσ/dQ2 begins at αs
0,

this is next-to-leading order (NLO) here



• σ̂q̄q for Drell-Yan at NLO

d2σ̂
(1)
qq̄→γ∗g(z,Q2, µ2)

dQ2
= σ0(Q

2)

(

αs(µ)

π

)

{

2(1 + z2)

[

ln(1 + z2)

1 − z

]

+

−
[

(1 + z2) ln z
]

(1 − z)
+

(

π2

3
− 4

)

δ(1 − z)

}

+ σ0(Q
2) CF

αs

π

[

1 + z2

1 − z

]

+

ln

(

Q2

µ2

)

– Plus distributions: “generalized functions” (c.f. delta function)

– µ-dependence: evolution for hadron-hadron scattering



• What they are, how they work

∫ 1

0

dx
f(x)

(1 − x)+
≡
∫ 1

0

dx
f(x) − f(1)

(1 − x)

∫ 1

0

dx f(x)

(

ln(1 − x)

1 − x

)

+

≡
∫ 1

0

dx ( f(x) − f(1) )
ln(1 − x)

(1 − x)

and so on . . . where f(x) will be parton distributions

• f(x) term: real gluon, with momentum fraction 1 − x

• f(1) term: virtual, with elastic kinematics



• A Special Distribution

• DGLAP “evolution kernel” = “splitting function”

Pqq(x) = CF
αs

π

[

1 + x2

1 − x

]

+

• Nonsinglet, leading order



Applications

• M-dependence for dileptons at high energy (γ and Z) &

forward-backward asymmetry in σBorn compared to NLO

A test for “new” physics in the hard scattering



GETTING THE PDFs FROM DATA

W asymmetries at the Tevatron: d/u

W+ requires ud̄, W− needs ūd

At LO, since up = ūp̄, etc.

dσW+

dη
=

2πGF√
2

up(xa =
√

τeη) dp(xb =
√

τe−η)

Asymmetry tests d/u as a function of

A(y) ≡ σW+(η) − σW−(η)

σW+(η) + σW−(η)
=

up(xa) dp(xb) − dp(xa)up(xb)

up(xa) dp(xb) + dp(xa)up(xb)
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• Foward fixed target DY (τ = M2/S) and d̄/ū

At LO,

dσpN

dM2dη
=

(

4πα2
EM

9M4

)

∑

a

λ2
a fa/p(

√
τeη,M) fā/N(

√
τe−η,M)

Large η; a valence, ā sea: sensitivity to sea distribution

E866: compare pp and pd

σpD

2σpp
∼ 1

2

(

1 +
d̄p(

√
τe−η)

ūp(
√

τe−η)

)

Previously unavailable information on the sea ratio
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USING RESUMMATION: THE QT DISTRIBUTION

• Low QT Drell-Yan & Higgs at leading log (LL) (αs
n ln2n−1 QT )

dσ(Q)

dQT
∼ d

dQT
exp

[

−αs

π
CF ln2

(

Q

QT

)]

(CF = 4/3)

• Double jet-soft factorization → double logs (from A. Kulesza, G.S., W. Vogelsang (2002)

66 < Q < 116 GeV

CDF

Exclusive Limit
Resum

Resum+power



• General features:

Maximum then decrease near “exclusive” limit

(parton model kinematics) replaces divergence at QT = 0

Soft but perturbative radiation broadens distribution

Typically nonperturbative correction necessary for

full quantitative description

Recover fixed order predictions σ(1) away from exclusive limit

Generally requires (Fourier) transform (impact parameter)

to go beyond leading log



PUTTING IT ALL TOGETHER: OBSERVED HADRONS

• Pions at fixed target and RHIC (Vogelsang and de Florian, 2004)

p3
T dσ(xT )

dpT
=

∑

a,b,c

∫ 1

0

dx1 fa/H1

(

x1, µ
2
F

)

∫ 1

0

dx2 fb/H2

(

x2, µ
2
F

)

×
∫ 1

0

dz z2 Dh/c

(

z, µ2
F

)

×
∫ 1

0

dx̂T δ

(

x̂T − xT

z
√

x1x2

)
∫ η̂+

η̂−

dη̂
x̂4

T ŝ

2

dσ̂ab→cX(x̂2
T , η̂)

dx̂2
Tdη̂

η̂: pseudorapidity at parton level

η̂+ = −η̂− = ln

[

(1 +
√

1 − x̂2
T )/x̂T

]



Averages for distribution x and fragmentation z’s

<z>

<x>-jet

RHIC 200 GeV midrapidity average z for pions, and average x for pions, photons, jets
(NLO) Thanks to Werner Vogelsang

– As for the DY QT distribution: collinear f + D + soft ⇒ double logs



ŝ dσ̂
(1)
ab→cX(v, w)

dv dw
≈ ŝ dˆ̃σ

(0)
ab→cd(v)

dv

[

A′ δ(1 − w) + B′

(

ln(1 − w)

1 − w

)

+

+C ′

(

1

1 − w

)

+

]

– 1) For resummation, take x2N
T moments:

σ̂
(res)
ab→cd(N) = Cab→cd ∆a

N ∆b
N ∆c

N Jd
N

[

∑

I

GI
ab→cd ∆

(int)ab→cd
I N

]

σ̂
(Born)
ab→cd(N)

– 2) A typical resummed factor

∆a
N = exp

[

∫ 1

0
zN−1

−1
1−z

∫ (1−z)2Q2

µ2
FI

dq2

q2 Aa(αs(q
2))
]

A = CF (αs/π) + . . .

– Invert the moments: resolve a long-standing fixed-target/collider contrast!
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– And jets at the Tevatron, and now the RHIC
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– Nicely settled down.



Conclusions as Prologue

• pQCD formalism works well in pp collisions

(not least from RHIC data/theory interplay)

• pQCD revolves around factorization and energy flow

• Multiple interactions induce corrections to factorized cross sections

typically (number of partons) × (soft scale/hard scale)2

• Induced radiation redistributes energy flow

• Centrality in AA collisions a control parameter

for these corrections



• Heavy quark/quarkonia production of special sensitivity

• Nuclear collisions shed light on pQCD and vice-versa

• Enjoy the conference!


